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ABSTRACT
As Large Language Models (LLMs) gain in popularity, it is impor-
tant to understand how novice programmers use them and the
effect they have on learning to code. We present the results of a
thematic analysis on a data set from 33 learners, aged 10-17, as they
independently learned Python by working on 45 code-authoring
tasks with access to an AI Code Generator based on OpenAI Codex.
We explore several important questions related to how learners
used LLM-based AI code generators, and provide an analysis of the
properties of the written prompts and the resulting AI generated
code. Specifically, we explore (A) the context in which learners
use Codex, (B) what learners are asking from Codex in terms of
syntax and logic, (C) properties of prompt written by learners in
terms of relation to task description, language, clarity, and prompt
crafting patterns, (D) properties of the AI-generated code in terms
of correctness, complexity, accuracy, and (E) how learners utilize
AI-generated code in terms of placement, verification, and manual
modifications. Furthermore, our analysis reveals four distinct cod-
ing approaches when writing code with an AI code generator: AI
Single Prompt, where learners prompted Codex once to generate the
entire solution to a task; AI Step-by-Step, where learners divided the
problem into parts and used Codex to generate each part; Hybrid,
where learners wrote some of the code themselves and used Codex
to generate others; and Manual coding, where learners wrote the
code themselves. The AI Single Prompt approach resulted in the
highest correctness scores on code-authoring tasks, but the lowest
correctness scores on subsequent code-modification tasks during
training. Our results provide initial insight into how novice learners
use AI code generators and the challenges and opportunities associ-
ated with integrating them into self-paced learning environments.
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We conclude with various signs of over-reliance and self-regulation,
as well as opportunities for curriculum and tool development.
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1 INTRODUCTION
Large Language Models (LLMs) trained on code like OpenAI Codex
[12] are capable of generating functioning programs from natural
language descriptions. Since publicly made available by companies
like OpenAI through user-facing tools such as ChatGPT (a Q&A
chatbot) or Github Copilot (an IDE-based AI coding assistant), the
code generation capabilities of LLMs are becoming more accessible
to a wider array of people. These tools have the potential of scaling
up computing education in self-paced learning environments and
broadening participation in computing by assisting beginners with
debugging, code generation, code explanation, and responding to
questions about code.

Despite their potential benefits, LLMs present challenges in edu-
cational contexts. Their usage could result in learner dependency,
hindering code authorship without assistance. Novice coders may
also struggle with technical jargon, expressing coding intent, and
comprehending or verifying AI-generated code. Additionally, from
an educator’s perspective, issues around academic integrity and
plagiarism pose valid concerns [5].
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While LLM-based code generators are not specifically designed
for education contexts, recent studies have assessed their perfor-
mance in computer science education and their effects on learners
and teachers [15, 17, 18]. Kazemitabaar et al. [28] compared stu-
dents’ learning outcomes with and without an AI code generator
based on OpenAI Codex. They found that using Codex did not harm
learners’ performance on post-tests one week later, and students
who performed better on Scratch pre-tests performed significantly
better on retention post-tests if they had prior access to Codex.
However, we still do not know how these outcomes occur. To fully
understand the benefits of AI code generators in education, it’s cru-
cial to know how novices use them while learning to code [5, 18].

In this paper, we conduct a thematic analysis on a data set of 33
novice learners (ages 10-17) who had access to anAI CodeGenerator
while learning Python programming for the first time. We attempt
to answer two main research questions:

• RQ1:How do novices use and interact with LLM-based Code
Generators when learning to write code by practicing CS1
coding tasks in a self-paced learning environment? A:When
do learners use Codex in the problem-solving process? B:
What are learners asking Codex to generate?C: What are the
properties of the prompts that novices craft in terms of rela-
tionship to the task description, language, and vagueness?D:
What properties does the AI-generated code have? E: How
do novices use, modify, and verify AI-generated code?

• RQ2: What coding approaches do novice learners employ
when they have access to LLM-based code generators to
solve programming problems? How do these approaches
differently impact learning outcomes measured by retention
post-tests?

To answer these questions, we analyzed log data from a previous
study [28] using a custom log analysis tool. Our findings reveal
when and how novice learners interact with LLM-based code gen-
erators in addition to four distinct coding approaches that reflect
learners’ personal choices for utilizing AI code generators during
programming. Our thematic analysis reveal various signs of over-
reliance and self-regulation in students when they write code with
an AI code generator. Our results suggest the importance of effec-
tive usage patterns for maximizing learning outcomes when novice
learners have access to AI code generators. These findings can in-
form the design of future introductory programming tools, and
highly scalable self-paced learning environments that incorporate
AI code generators and the pedagogy that accompanies them.

2 RELATEDWORK
2.1 Programmers’ Experience with AI Coding

Assistants
Large language models (LLMs) are deep neural networks trained on
extremely large-scale model parameters using terabytes of textual
data sets. When trained on large corpora of source code, these
models can also generate code from natural language descriptions
[2, 12, 23] . Pre-trained LLMs, like OpenAI Codex [12] based on
GPT-3, Google PaLM [13], and DeepMind AlphaCode [32], have
enabled LLM code generation tools like Github Copilot [20]. The

emergence of these technologies has sparked research on evaluating
how professional programmers utilize AI code generators [45].

One line of research is exploring how users use GitHub Copilot
[4, 36, 50, 51], a commercialized programming tool powered by
OpenAI Codex. GitHub Copilot can provide autocomplete-style
code suggestions based on existing code and natural language de-
scriptions (e.g., comments). For instance, Barke et al. [4] conducted
a grounded theory analysis with 20 programmers to identify two
ways in which programmers interact with Copilot: acceleration,
where Copilot speeds up the writing of code in "small logical units"
because the programmer has a clear intention, and exploration,
where Copilot suggestions are used to help with planning and
exploration. There also have been other studies analyzing pro-
grammer experiences with more experimental AI coding assistants
[25, 53, 54]. For example, Ross et al. [44] developed a conversational-
based coding assistant and found two main usage patterns: bringing
assistant’s help to solve the entire challenge at once, or breaking it
down to solve each smaller task individually.

However, most of the existing usability work on AI-assisted cod-
ing assistants focuses on the experience of expert programmers
within well-designed experimental context, typically by testing
a small number of programming tasks. To our knowledge, only
Jayagopal et al. [24] focused novice programmers’ experience with
different program synthesizers including Copilot, but only for three
tasks. To further elucidate this topic, we believe it would be enlight-
ening to understand novice programmers’ interaction with such
AI code generators in an authentic programming context with a
larger number of coding tasks. Therefore, in this work, we would
like to analyze the user interactions collected in a data set of novice
learners as they make progress and learn Python programming in
a self-paced learning environment while they have access to an AI
code generator.

2.2 Large Language Models in Computer
Science Education

As LLMs become more widely used in practice, education re-
searchers are exploring the potential of LLMs to produce educa-
tional content, enhance student engagement and customize learning
experiences [27]. Recent work in the computer science education
community has started to explore the implications and opportu-
nities of LLMs on computer science learning from different per-
spectives [5]. Most of the recent work focused on understanding
the capabilities of LLMs for completing programming tasks [15],
generating instructional content [31], and developing new con-
tent creation methods [16]. For example, Finnie-Ansley et al. [18]
showed that Open AI Codex performs better than most students on
code writing questions in both CS1 and CS2 exams. When it comes
to creating CS educational content, prior evaluations showed that
LLMs have the potential be used to produce high enhancements
on programming error messages [31] and provided high-precision
feedback on code for fixing syntax errors [39]. Furthermore, Sarsa et
al. [46] analyzed the novelty, plausibility, and readiness of 120 pro-
gramming exercises generated by OpenAI Codex and proposed the
potential of using such models to come up with coding assignments.
As for code explanations, MacNeil et al. [32] reported student expe-
rience with LLM-generated code explanations in a web software
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development e-book. They showed that most students perceived
the code explanations as helpful, but engagement depends on code
length, code complexity and explanation types.

To better integrate LLMs into computer science education and
achieve student-centered learning, it is important to understand
how novice students use and interact with AI code generators
while they learn to code. For instance, we need to know what usage
patterns and coding approaches students employ when learning
with AI code generators, how these patterns and approaches impact
their learning, what types of prompts students write, what are
the attributes of the generated code and its relationship to the
prompts, and how students integrate AI-generated code into their
existing code. In this paper, we investigate these questions through
a systematic analysis of student log data on their interaction with
OpenAI Codex.

2.3 Supporting Novices While Writing Code
To help students write code, previous research has explored a vari-
ety of scaffolded approaches. Bruner [9] coined the term "scaffold-
ing" to refer to the process of giving students support structures so
they can learn a subject or skill that is above their level. Appropriate
scaffolding will equip learners with sufficient knowledge and skills
to perform the task independently. One direction provides support
before writing the actual code. For example, flowcharts have been
used to brainstorm and organize solution ideas before diving into
coding, according to Renske & Sjaak [48]. This has resulted in an
improvement of algorithm design and programming skills. More-
over, Cunningham et al., [14] described a multi-stage programming
process including arranging plans explicitly.

Another direction is to provide immediate assistance during the
actual code writing process. Such immediate assistance can be done
by providing detailed feedback based on the student’s current code
states [29]. This feedback could be explanations on what is wrong
in the existing code [47], suggestions on how to fix the error [49],
or next-step hints on improving the student’s solution towards the
goal [43]. In addition, when students ask for help, the available
support could also be a library of worked examples that students
can run and modify with output [52] or an equivalent Parsons
problem that students can actively work on [21]. While previous
research has examined a wide range of supportive methods, none
of them have considered the implications of AI code generator to
support students to write code.

As a first step, Kazemitabaar et al. conducted a controlled ex-
perimental to investigate the effects of incorporating an AI code
generator during code writing compared to a baseline condition
(writing code without any assistance) [28]. The previous work high-
lighted the need for a systematic analysis of students’ interaction
with AI code generators to better understand their impact on learn-
ing. Building upon this prior research [28], our aim is to identify
key moments when students choose to use AI code generators, the
attributes of the code they seek in different situations, the language
properties used in prompts, how they utilize AI-generated code,
and how the coding approaches they use with AI code generators,
influence their learning.

3 METHODOLOGY
3.1 Data Set and Data Instrumentation
To explore how novice use AI code generators, we analyzed a data
set from a prior study [28] in which 69 novice learners (ages 10-
17) used Coding Steps (https://github.com/MajeedKazemi/coding-
steps) as part of a three-week study. Coding Steps is a self-paced,
online learning environment that includes 45 CS1 Python coding
tasks that were designed to gradually introduce new concepts. The
system includes an embedded programming environment, func-
tionality to submit code to remote instructors that grade submitted
work and provide real-time personalized feedback, a novice-friendly
Python tutorial, and an AI code generator (based on OpenAI Codex).

The original study included two conditions: one in which learn-
ers had access to an AI code generator (the Codex condition), and
another in which the AI code generator was not available (the Base-
line condition). In this work, we reuse the same data but only focus
on the log data from the 33 learners in the Codex condition to inves-
tigate new research questions. Four types of timestamped logs were
collected from learners: code edit logs, console run logs, AI code
generation logs (including prompt message and generated code),
and submission logs. Log data has become an important data source
to understand programming experiences [8] and coding approaches
[18, 22]. Log data can provide valuable insights for computing edu-
cation researchers [34] as it can capture detailed information about
students’ experiences and actions.

3.2 Original Study Design and Participants
The original study consisted of ten 90-minute sessions, held over
three consecutive weeks, covering a session of introduction to
Scratch, seven sessions of Python training, and two evaluation
sessions including a retention post-test one week later.

3.2.1 Participants. The original study included 69 participants (21
female, 48 male) aged 10-17 (M=12.5; SD=1.8). Participants were
recruited from over 200 sign-ups at coding camps in two major
North American cities. The study was approved by the Research
Ethics Board of the original author’s institution. Parental/guardian
consent was obtained before the first session and each participant
received a $50 gift card as compensation.

From the 33 participants that we focus on in this study, none
reported any prior text-based programming experience, 32 indi-
cated using a block-based programming environment like Scratch
or Code.org, and 12 indicated taking a programming-related class in
the past. In terms of language, 25 participants were English speak-
ers, while 1 reported difficulty explaining things in English. More
details about the study can be found in the paper that presents the
original study [28].

3.2.2 Study Procedure. The first session included a one-hour lec-
ture on the fundamentals of programming using Scratch, and a pre-
test evaluation including 25multiple-choice questions about Scratch
programming. The Scratch lecture covered all the key concepts
required in the training phase, including: input/outputs, random
numbers, arithmetic operators, conditionals, comparators, logical
operators, loops, and arrays.

Students then began the training phase by watching an intro-
duction video with several examples of AI code generation. As
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a self-paced online learning environment, learners received per-
sonalized feedback from remote instructors and were provided a
novice-friendly Python documentation that included worked ex-
amples, common Python errors, and debugging strategies. During
this phase, learners worked on 45 two-part programming learning
tasks and 40 multiple-choice questions at their own pace using
the Coding Steps IDE (Figure 1). The tasks and the topics were
presented in a fixed order with gradually increasing complexity.
For more details about each of the tasks, read the Appendix A of
the original paper [28].

Each coding task had two parts: code-authoring and code-
modification. For each part, learners first read the task description
and a few examples of input and expected output. To finish a code-
authoring task, learners were instructed to write code in the code
editor with access to the AI code generator. Learners were also pro-
vided with a Python documentation inside the IDE. Regarding the
code-modification tasks, learners were given their own accepted
submission from the code task as the starting point. If the learner
skipped a code-authoring task, they were shown an example correct
solution as the starting point for the associated code-modification
task. Learners had no access to the AI code generator for modifica-
tion tasks.

Finally, the evaluation phase comprised an immediate post-test
followed by a retention post-test administered one week later. The
tasks used in the evaluation phase were analogous in terms of
difficulty and topics to the tasks used in the learning phase. Both
post-tests contained 10 coding tasks (5 code-authoring and 5 code-
modification tasks), and 40 multiple-choice questions. Learners
had no access to the AI code generator, Python documentation, or
instructor feedback during the evaluation phase.

3.3 Data Analysis
To assist with our data analysis, we developed a web interface for
visualizing log data and replicating student behaviors in a vertical
time sequence based on log entries. The interface displays high-
level metadata for each task, keystroke counts for edit actions, side-
by-side diffs for code modifications, prompt messages along with
AI-generated code for Codex usages, and console input/output for
execution actions. When analyzing data, we applied a combination
of deductive and inductive approaches in thematic analysis [6, 35].
We applied a deductive approach to categorize learners’ log data
into groups based on task number and student ID, then we analyzed
each student-task pair under two levels.

For analysis, we defined each AI code generation request (which
was initiated by a prompt) as a single unit of analysis, resulting in a
total of 1666 data points. To answer RQ1, we created four high-level
code dimensions: (i) the context of using Codex in terms of editor
contents and prior actions (RQ1 A), (ii) prompt attributes including
requested content, details, and language (RQ1 B, C), (iii) quality of
the AI-generated code (RQ1D), and (iv) utilizing AI-generated code
(RQ1 E). This enabled us to focus on relevant data for each research
question in following rounds of analysis [7]. Additionally, to answer
RQ2, we derived four high-level recurring coding approaches based
on RQ1 and then assigned a single approach to each of the tasks
submitted by learners.

Under each high-level dimension, we applied an inductive ap-
proach where we read through all the data and allowed codes to
emerge during the process [7]. We generated the codebook itera-
tively following this process: First, two researchers (the first two
authors of this paper) familiarized themselves by going through
all the logs, identifying candidate sub-dimensions (if possible), and
specifying codes for each dimension. These codes were then itera-
tively revised as the data was reviewed and drafted into an initial
codebook. Moreover, the two researchers independently coded data
for three tasks (6.4% of the data), each with different difficulty levels
and topics using the initial codebook. After that, they discussed
the initial coding results, resolved conflicts, and further refined the
codebook.

After refining the codebook (Table 1), the two researchers inde-
pendently coded another five tasks (13.2% of the data) and reached
an inter-rater reliability of 0.87 (alpha values > 0.80 [37]) using
percentage agreement [35]. After addressing the disagreements
and finalizing the codebook, the two researchers coded the remain-
ing data individually by assigning task numbers at random. The
full codebook can be found at https://tinyurl.com/codex-analysis-
codebook.

4 RESULTS
Overall, we analyzed 1666 Codex usages from 1379 submitted tasks
(356 tasks were submitted without using Codex). A Codex usage
is designated by writing a prompt in the AI code generator’s text-
box and pressing the generate button. The generated code is auto-
matically placed at the user’s cursor in the editor. We define the
problem-solving process as a sequence of actions until the final
submission of a task. Actions include manually editing code, using
Codex, using the documentation, running the code, providing input
to it, and submitting it for evaluation by remote instructors.

We denote participant numbers as 𝑃𝑛 (ranked based on pre-test
Scratch scores: 𝑃1 with the highest score).

4.1 RQ1 A: When do Learners Use Codex?
We identified five primary scenarios (based on the state of the
editor) in which learners prompted Codex: at the beginning (46%,
n=760), after clearing the editor (5%, n=83), after manual coding
(17%, n=282), after using Codex (34%, n=572), and while already
having the solution (1%, n=16). Below we briefly describe each
scenario.

4.1.1 Starting with Codex. In 760 tasks, learners used Codex at the
beginning of the task, often (92%, n=703) with no initial attempt
of prior manual coding. Common behaviors included copying the
full task description to generate the entire solution (66%, n=503),
rephrasing task description to generate the entire solution (7%,
n=53), and breaking down the task into subgoals (26%, n=199).

4.1.2 Using Codex After Clearing the Editor. In 83 Codex usages,
learners cleared their editor after being stuck with invalid code with
repeated compiler errors and wrong edits (86%, n=71), or failing
to properly test correct code (14%, n=12). Learners then cleared
their editor and prompted Codex for either the entire (51%, n=42)
or part of the task (49%, n=41). Notably, 75 of these 83 instances
(90%) occurred after unsuccessful Codex usages, resulting in broken
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Table 1: High-level codebook that was used to analyze each Codex usage.

High-Level Code Dimensions Sub-dimensions

Context of Codex Usage (RQ1 A) prior manual edits, prior codex usage, existing issues
Prompt Attributes (RQ1 B, C) request content, relationship to task, vagueness, requesting syntax/logic, fix-

ing/localizing issue, repeated prompt
AI-Generated Code Properties (RQ1 D) quality properties, quality reason, generated extra unspecified code, outside curriculum
Using and Modifying AI-Generated Code (RQ1 E) placement, modifying existing code, modifying AI-generated code, testing/verification,

next action

AI-generated code or misplaced code that was challenging to fix
manually.

4.1.3 Using Codex After Manual Coding. Out of 293 Codex us-
ages, learners used Codex following instances of manual cod-
ing. In 102 (35%) instances, learners manually wrote correct code
prior to prompting Codex. Learners typically wrote declarations
(e.g., getting input from user or generating random numbers)
and used Codex to implement the next major subgoal. Six in-
stances involved learners writing complex code with loops or
nested conditionals prior to prompting Codex. Furthermore, prior
to 115 (39%) Codex usages, learners authored mostly correct
code with minor issues. Common patterns included (i) struggling
with string and integer concatenation before prompting Codex to
fix, (ii) 28 instances of deliberately writing incomplete code like
num = before prompting Codex with “random number”. In two
unique cases, 𝑃3 manually wrote code that included ellipsis like
print("It took ", ..., "attempts.") and then prompted Codex
to fill in the behavior (e.g., “counting attempts”). In 76 (26%) in-
stances, Codex was used after writing mostly incorrect code. Exam-
ples included syntax errors in code involving string and variable
concatenation such as join(name + "bot") (𝑃2), obtaining number
from the user like print "Enter a number:" (𝑃25). Learners used
Codex to fix these issues.

Furthermore, in the 191 cases where learners faced issues af-
ter manual coding, Codex was used to fix existing code in 44%
(n=85) instances, generate the entire solution in 18% (n=34) cases,
or generate new code ignoring the issue in 32% (n=62) cases. These
initial manual coding attempts before using Codex highlight self-
regulation in learners. Moving forward, it is crucial for future tools
and curriculum to prioritize effective methods for using LLMs for
debugging manually written code.

4.1.4 Using Codex after Using Codex. In 572 instances of using
Codex after a previous Codex usage, learners handled the prior
AI-generated code as follows: 53% (n=304) kept it unchanged, 36%
(n=206) deleted it, 7% (n=41) made minor modifications, and 4%
(n=21) broke it. Among the cases where learners correctly placed the
AI-generated code (304 cases), 80% (n=243) proceeded to generate
new subgoals. Of interest, we identified 84 Codex usages in which
learners requested code similar to what was already in their editor.
Furthermore, after deleting the prior AI-generated code (206 cases),
learners either re-attempted using Codex by rephrasing the prompt
message in 40% (n=130) cases, or decided to clear their entire editor
(32%, n=66).

4.1.5 Using Codex while Having Solution. We identified 16 in-
stances where learners used Codex when they already had the
task’s solution. Of interest, in six cases, learners compared their
manually written solution with an AI-generated solution and per-
formed minor edits to their own solution.

4.2 RQ1 B: What are Learners Asking from
Codex?

Learners used Codex to generate the entire solution (43%, n=723),
generate new subgoals (37%, n=626), and fix existing code (7%,
n=110). When generating new subgoals, we found 135 Codex us-
ages where learners used Codex to generate code similar to exist-
ing code in their editor which may indicate over-reliance on the
AI code generator. For example, when 𝑃25 prompted Codex with
“ask for another number” they already had similar code in their
editor: number = int(input("Enter a number: ")) . Additionally,
when fixing code using Codex, learners were often (61%, n=73) able
to correctly localize their issues. In seven cases, learners explicitly
prompted Codex to fix their code (see Figure 1 for an example).

By analyzing crafted prompts, we identified two categories: re-
questing either pure syntax (e.g., "get a number from user"), or
both syntax and logic (e.g., "get a number until it’s 0"). Of the 723
prompts where learners prompted Codex to generate the entire so-
lution, 46% requested syntax and logic, while 54% sought pure syntax.
However, in the 626 prompts for new subgoals, 85% asked for pure
syntax, with the rest requesting syntax and logic. This demonstrates
that learners mostly requested syntax when they decomposed a
task into multiple subgoals.

4.3 RQ1 C: Prompt Properties
For each Codex usage, we analyzed the properties of the prompt in
terms of its relationship to the task description, its language, and its
clarity. Additionally, our analysis highlights two prompt crafting
patterns: (i) solving a task by dividing its task description sentence
by sentence for each prompt, and (ii) using repeated and slightly
reworded prompts to achieve desired code.

4.3.1 Prompt Relationship to Task Descriptions. More than half
(52%, n=864) of all requested prompts were copied directly from
the task description, with 27% (n=233) being partial copies (request-
ing code for part of a task). The major groups of the remaining
prompts (48%, n=802) were written independently by learners: (i)
335 prompts were accurately reworded versions of the task descrip-
tion with all required details and using similar vocabulary, (ii) 223
prompts included less details or vague interpretations of the task
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Figure 1: An example of using AI-generated code as an example to fix syntax error with writing loops.

which often led to code with omitted details or unintended behav-
ior, (iii) 41 were based on incorrect task interpretations, and (iv) 71
unrelated to the task or Python programming.

4.3.2 Prompt Language. We identified 86 prompts written by learn-
ers that were similar to a pseudocode and included syntactical ele-
ments. For example, when 𝑃4 wanted to find the largest number in a
list, they prompt Codex with a pseudocode that specified the exact
logic “for n in numbers, if n > l, set l to n” followed by “print Largest
number: l”. Compared to other learners who simply prompted the
behavior (e.g., “find the largest number” ), such usages of pseudocode
indicate a deeper algorithmic thinking. Additionally, learners some-
times articulated their desired code by specifying the output format
such as “display message Grade: grade”. We also observed prompts
that described the entire behavior through an input/output exam-
ple, including when 𝑃12 prompted “output: What is your name?
output: Hello, Bob!” which generated the correct code. Furthermore,
sometimes learners skipped static values in their prompt messages
so they could focus more on the logic while crafting prompts. For
example, 𝑃6 prompted “if variable number is greater than 75 print 2.
If anything else print 3” and then modified the values of “2” and “3”
in the AI-generated code based on the task requirements.

4.3.3 Prompt Clarity. We found that about 28% (n=201) of prompts
had some indicators of vagueness such as being under-specified.
A common theme was not specifying the initial value for variable
declarations like “variable called name” (𝑃8, 𝑃10, 𝑃16). To generate
random numbers, vague prompts did not indicate where to store
the number, or the range to select from like “rand” (𝑃3), or “number
= roll” (𝑃32). Vague prompts for conditionals did not specify the
condition like “check variable” (𝑃25). To define loops, vague prompts
did not specify the stop condition like “forever, set M to input” (𝑃4),
or were expressed vaguely like when 𝑃20 prompted “go back to top”
after noticing their code does not repeat.

4.3.4 Prompt Crafting Patterns. We found that learners frequently
decomposed tasks into individual prompts. While effective for se-
quential and independent subgoals, this approach faltered when a
sentence in the task altered or built on top of the instructions given
in the previous sentence. In the latter case, the LLM usually re-
generates the existing code with the added functionality, therefore,
requiring learners to replace it with their existing code. Moreover,
we examined tasks with multiple prompts and observed that 7%
(n=109) were exact repetitions, and 3% (n=55) were slight rephras-
ings, typically used when initial prompts failed to yield the desired
code. Only in 13 Codex usages learners added meaningful detail in
reworded prompts. Notably, we found six instances where learners
updated minor values via reworded prompts rather than modifying
values in the pre-existing AI-generated code.

4.4 RQ1 D: AI-Generated Code Properties
We analyzed AI-generated code from three dimensions: correct-
ness, relation to curriculum (complexity), and relation to prompt
(accuracy). We found that of the 1666 Codex usages, 81% (n=1357)
of all AI-generated code was produced without any identifiable
problems, while 19% (n=309) of the generated code exhibited some
problematic characteristics, including: not following task require-
ments 28% (n=87), regenerating existing code 28% (n=86), missing
minor code 19% (n=60), incorrect code 8% (n=25), and generating
only comments 8% (n=25). Finally, we report on the relationship
between the quality of AI-generated code and the quality of the
prompts associated with them.

4.4.1 Correctness of AI-Generated Code. Here we focus on two
problematic characteristics of AI-generated code. First, Codex re-
generated code that existed in the editor in 86 usages. This behavior
caused complications when learners had an erroneous code and
used Codex to fix it. For example, when 𝑃15 wanted to fix their in-
correct code message = ("num is:" + num) , they prompted Codex
with “make a variable called message and define it so that it means
num is: the num variable”, however, Codex regenerated their incor-
rect code. Furthermore, in 60 cases Codex did not generate minor
pieces of code that were necessary for the code to execute properly,
which was often (56 cases) a missing import random statement, or
not casting input from string to integer.

4.4.2 Complexity of AI-Generated Code. We identified 22 instances
in which Codex generated code that was either not covered in
the curriculum or from advanced topics that were supposed to be
introduced later in the training phase. For example, when learners
have not reached tasks on loops, 𝑃26 prompted Codex with “user
must enter a value” which resulted in Codex generating a while
loop that repeatedly received an input from the user until it had
a valid value. This is probably because the student included the
word “must” in their prompt. Of interest, 11 usages in which the
learner copied the task from the task description yielded into Codex
generating code that was outside of the curriculum.

4.4.3 Accuracy of AI-Generated Code. We identified 204 cases in
which Codex produced additional code that was unspecified in
the prompt message, and instead was predicted from the editor’s
content or the provided prompt message. For example, when the
editor contained three variables called num1 , num2 , and operator,
𝑃3 prompted Codex with “check operator symbol” which generated
four if-else conditions checking the operator variable with the basic
math operators.

In 39 cases, the predictions of the extra code were first gener-
ated as comments followed by some code. For instance, when 𝑃25
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prompted Codex with “check if a number is divisible”, it first gener-
ated \# by 3 and then on the next line, if number \% 3 == 0: .

We analyzed the extra code that was generated in each of the
204 cases and compared it to the requirements of its corresponding
task to determine the usefulness of the extra code. We found that
34% (n=70) were wrong and had to be deleted, 34% (n=60) were
directly usable without no modification, 14% (n=29) were usable
after some manual modifications, and 12% (n=25) were usable after
minor changes to the values.

4.4.4 Effect of Prompt Quality. We analyzed the context, prompt,
and the generated code to understand why Codex generated
low-quality code. We identified reasons including poorly crafted
prompts that do not properly articulate the intended behavior
(n=105), prompts with missing important detail (n=71), and existing
low-quality code in the editor causing Codex regenerate similar
code (n=34).

Furthermore, by analyzing the source of prompts, out of 864
prompts that were copied from the task description, 81% (n=701)
produced high-quality code, 7% (n=59) prompts produced extra
unspecified code, 5% (n=41) produced code with a minor missing
item, while 7% (n=63) were unusable as it either repeated exist-
ing low-quality code, generated only comments, or the code was
not following the task requirements. From 354 prompts that were
reworded versions of the task description, 72% (n=256) generated
high-quality code, 10% (n=38) generated extra unspecified code,
2% (n=9) generated code with a minor missing item, while 15%
(n=51) were incorrect, only comments, or were repeated incorrect
codes. From the 225 prompts that were reworded versions of the
task description but with less detail, 46% (n=104) generated high-
quality code, 20% (n=66) generated extra unspecified code, 2% (n=4)
with minor missing items, while 22% (n=50) prompts generated
low-quality code that were not usable. From the 89 prompts that in-
cluded pseudocode and syntactical elements, 63% (n=56) produced
high-quality code, 16% (n=14) generated extra unspecified code,
20% (n=18) generated code that was not the intended behavior.

4.5 RQ1 E: Utilizing AI-Generated Code
Here we report how learners utilized AI-generated code in terms of
placement, verification, and modification. We also present a pattern
in which learners use AI-generated code as an example to fix their
incorrect code.

4.5.1 Placement of AI-Generated Code. The AI code generator in
Coding Steps generates code at the user’s cursor location. Therefore,
learners had to manually adjust the code placement if their cursor
was in the wrong spot. Additionally, when the AI-generated code
included parts of the existing code, learners also needed to replace
their existing code with the AI-generated code.

For the most part, learners were able to place the AI-generated
code in the correct position. However, out of 1666 Codex usages, we
identified 69 instances in which learners placed the AI-generated
code incorrectly. There were seven cases of not placing the AI-
generated code at the correct indentation (e.g., inside a loop), and
six instances of placing the AI-generated code before a variable
that it accessed was declared. Additionally, in 18 cases, instead of

replacing their original code with the newly AI-generated code,
learners kept both versions.

4.5.2 Verifying AI-Generated Code. Through our thematic anal-
ysis, we identified three active verification approaches including
tinkering with AI-generated code, properly running the code to
evaluate it, and manually adding code for verification.

We identified 30 instances in which learners actively tinkered
with the AI-generated code by temporarily changing values, con-
ditions of while loops, modifying syntax, or even temporarily re-
moving code to see how it contributed to the entire program. For
example, after 𝑃3 declared a list of five elements, they prompted
Codex with “print 1st message in list” and Codex generated
print(myList[0]) . They then tinkered with the list index, tem-
porarily changing it from 0 to 1, testing the code to see how it
affects the output.

From the total 1666 Codex usages, learners tested their AI-
generated code in 60% (n=1005) usages. Of which, 71% (n=720)
were executed correctly without any errors, and 29% (n=285) with
errors or incorrect behaviors. However, after 485 Codex usages,
learners did not run their AI-generated code to test it. In 65 cases
(13%) learners deleted the AI-generated code, in 166 cases (34%)
learners moved on to using Codex for the next part of the task, and
63 cases (13%) in which learners submitted the AI-generated code
as their final solution without running the code.

Future studies with more rigorous techniques such as think-
aloud or eye-tracking studies are required to properly understand
how learners verify and check AI-generated code.

Furthermore, we observed that some learners added code manu-
ally to verify the behavior of the AI-generated code on several tasks.
For instance, out of the 22 learners who used Codex for a task that
required counting the digits of a randomly generated number, the
AI-generated code did not include a print statement to display the
random number, only displaying the final digits count. Therefore,
it made sense for learners to verify the code before submitting it.
Among the 11 learners who used Codex by copying the task de-
scription, only 𝑃14 and 𝑃16 correctly added verification code, while
four faced difficulties. Furthermore, out of the seven learners who
used Codex after manual coding, five correctly added verification
code, one struggled, and one did not verify the code at all. Figure 2
displays an example from 𝑃10 manually adding verification.

4.5.3 Modifying AI-Generated Code. We identified 175 cases in
which learners correctly modified the AI-generated code to align
it better with the task’s requested behavior. Some edits were
towards getting the correct output format. For example, on a task
in which learners used Codex which did not produce the correct
output format, 10 learners had to modify message = num1 * num2

into message = "num1 times num2 is " + str(num1 * num2) .
However, in 57 instances, learners broke correct AI-generated
code and were not able to fix it. In some cases, such incorrect
edits were accidents (e.g., removing a parenthesis) which left
them confused for the rest of the task. In other cases, learners
failed to get the desired output format and instead broke the
AI-generated code. For example, when 𝑃15 tried to add "Length:"

to the beginning of print(len(my\_list)) , they instead wrote:
print(len("Length:" + my\_list)) .
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Figure 2: An example of keeping the original code instead of replacing it with AI-generated code (𝑃12).

Furthermore, when Codex generated extra, unspecified code,
learners had to evaluate whether to delete, keep, or modify the
extra code. We analyzed 166 of such instances and found 103 in-
stances (62%) in which learners followed the expected behavior and
handled the extra code correctly, while in 50 instances (30%) learn-
ers mistakenly retained the extra incorrect code, or in 12 instances
(7%) learners deleted the extra useful code.

In 72 cases, Codex generated incorrect code that should have
been erased (e.g., when it repeated existing incorrect code). Learners
immediately deleted the extra non-useful part of the code in 62%
(n=45) cases, while keeping the incorrect part in 38% (n=27) cases.
In extreme cases like when Codex generated only comments for
𝑃12, they executed the code which did not produce any output, but
then proceeded and submitted the comments. In a similar situation,
𝑃14 had written six lines of code but faced a logical issue they could
not fix. They then prompted Codex with the copy of the entire task
description. However, Codex repeated their existing incorrect code.
Despite this, 𝑃14 replaced their original code with the incorrectly
repeated code and submitted it without testing instead of deleting
the incorrect AI-generated code.

4.5.4 Using AI-Generated Code as Example. We identified 26 in-
stances in which learners used the AI-generated code as an example
to fix their existing code or write new code similar to the generated
code, instead of replacing their code with the newly generated code.
For example, 𝑃6 was struggling with concatenating a string and an
integer, so they prompted Codexwith “message = "num is: " plus vari-
able num” which generated message = "num is: " + str(num) .
However, 𝑃6 did not simply replace their incorrect code with the
AI-generated code, but instead carefully compared the two codes
and fixed their own code manually. Similarly, 𝑃3 was trying to
write an if-else conditional for the first time, however, not knowing
the proper syntax, they encountered many issues. Therefore, they
prompted Codex with “if else” which generated a sample code for
them to fix their code. Similarly, when 𝑃2 was trying to write a for
loop to accumulate a number by five for 25 times, they forgot about
the colon and indentation which caused an error. To receive help,
𝑃2 prompted Codex with “say hello 10 times” and then fixed their
code with the AI-generated code as an example (Figure 3).

4.6 RQ2: Effect of AI Code Generator Coding
Approaches

In previous sections, we presented results for each Codex usage.
Now we shift our focus to how novices used Codex alongside man-
ual programming approaches. Our analysis identified four distinct
coding approaches used by learners to incorporate Codex into

their programming practice: AI Single Prompt, AI Step-by-Step,
Hybrid, and Manual. For each coding approach, we provide a
description of the practice, descriptive statistics related to its us-
age, correlation with code-authoring and code-modification scores
during the training phase. See Table 2 for a summary of statistics
for each coding approach. We observed a limited number of tasks
(n=48, 3.5%) where learners switched approaches, for which we
selected their final approach for our quantitative analyses.

4.6.1 AI Code Generator Coding Approaches. AI Single Prompt:
The most frequently used coding approach (n=628, 46%) was using
a single prompt to generate the entire solution (Table 2, Row 1).
On 400 tasks, learners prompted Codex with a copy of the task
description and submitted the AI-generated code with no manual
coding (17 tasks were submitted without testing). Additionally, on
48 tasks, learners wrote the prompt message by themselves using
their own words and understanding of the task.

AI Step-by-Step: In this coding approach, which was used in 82
tasks (6%), the main body of the submitted code was generated by
Codex through multiple and consecutive Codex usages for different
parts of the task (Table 2, Row 2). Learners identified multiple
subgoals based on the task description or simply broke the task
description by its sentences and then prompted Codex with each
of the parts.

Hybrid: In this coding approach that was used for completing
252 tasks (19%), a few subgoals of the submitted task were generated
by Codex while the rest were written manually (Table 2, Row 3). On
57 tasks, learners used Codex after manual coding only to debug
their code and fix an encountered issue.

Manual: In this coding approach that was used for completing
398 tasks (29%), the final solution submitted by the learners was
100% self-written (Table 2, Row 4). In a special variant of this coding
approach that was used in 42 tasks, learners used Codex, but did
not use the AI-generated code due to its low-quality.

4.6.2 Effect of Coding Approaches on Individual Learning Outcomes.
For every student, we calculated the utilization rate of each coding
approach as the number of tasks they used a particular approach
divided by the total number of tasks they completed during the
training phase. We then calculated a series of Linear Regressions to
investigate the relationship between the utilization rate of each cod-
ing approach and the immediate and retention post-test scores (on
coding tasks and conceptual-MCQs). Our results presented in Fig-
ure 4 show the relationship between the utilization of each coding
approach and performance on post-test evaluation tests. Although
our analysis did not reveal any significant relationships between
any of the coding approaches and the post-test evaluation tests, it
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Figure 3: An example of using AI-generated code as an example to fix syntax error with writing loops.

Figure 4: Each row represents correlations between the utilization of a coding approach and each of the four evaluation post-test
scores.

shows consistently positive trends between the Hybrid approach
and post-test scores as well as consistentlynegative trends between
the AI Single Prompt approach and post-test evaluation scores. A
possible interpretation of these findings suggests that individuals
who actively switched between manual and AI-assisted coding for
different parts of a task, demonstrated higher learning outcomes.

However, future, more in-depth studies are required to explore the
effect of coding approaches on individual learning outcomes.
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Table 2: Usage count and task correctness score averaged across all tasks in each coding approach.

Coding Approach Usage Authoring Score (%) Modifying Score (%)

AI Single Prompt 630 M=96%, SD=16% M=62%, SD=45%
AI Step-by-Step 82 M=76%, SD=37% M=55%, SD=47%
Hybrid 252 M=77%, SD=34% M=73%, SD=39%
Manual 397 M=63%, SD=43% M=73%, SD=39%

5 DISCUSSION
5.1 Signs of Over-Reliance and Self-Regulation
We have identified multiple signs of self-regulation on AI code
generators, where learners executed cognitive control during a
learning task [40]. For example, learners actively added code to
verify AI-generated code, or tinkered with the AI-generated code to
understand the underlying concepts. Additionally, when learners
temporarily removed a code that they deemed unnecessary and
tested the code to see how it contributed to the program, they
were actively engaged in the learning activity and showed signs of
self-regulation. Similarly, when learners used AI-generated code as
an example to fix their own code, they realized the importance of
practice in learning.

However, we also discovered signs of over-reliance [5]. Research
in Human-AI collaboration has reported that humans tend to over-
trust and rely too heavily on AI agents [38], even when they are
incorrect [10, 11]. Furthermore, as a learning support tool, such over-
reliance can also connect with ineffective help-seeking behaviors
in Interactive Learning Environments (ILE). ILEs are computer-
based instructional systems that help beginners learn through task-
based environments and support [1, 34]. When students use the
on-demand system help, they often rely too heavily on the system’s
bottom-out hints that provide the correct answer with little to no
explanation [1].

In our analysis, a common sign of over-reliance was the frequent
use of the AI Single Prompt coding approach, in which learners gen-
erated the entire solution using a single prompt. An extreme case
of such over-reliance was when learners employed this approach
at the beginning, prompted Codex with a copy of the task descrip-
tion, and submitted the generated code without any further editing.
This is similar to students’ heavy reliance on bottom-out hints in
ILEs which are more likely to harm their learning gains [3, 34]. For
example, such over-reliance could result in fake progress during
training and difficulties in applying basic concepts later in the train-
ing. Another sign of over-reliance was prompting Codex for code
similar to existing code. This is related to self-regulation behaviors
in help-seeking during problem-solving. Furthermore, this behavior
is against the requirement of “reinvestment of received help”, where
students are expected to reuse the received help in analogous tasks
[42]. Other signs of over-reliance were related to students’ potential
over-trust of AI systems. Compared to traditional computer-based
programming learning environments that provided correct sup-
port [41], AI systems might produce low-quality code that does
not lead to the correct solution. Two representative signs of this
over-reliance are accepting AI-generated code without verification
and misplacement of AI-generated code. This indicates that some

students might believe that AI code generators are fully capable of
providing flawless code and they can insert their output into the
intended location. Therefore, they assumed that no further action
or verification was required by themselves.

Overall, as AI code generators are becoming more prevalent,
effective, and accessible through tools like ChatGPT and Copilot, it
is important to promote behaviors that contribute to higher learning
outcomes while increasing awareness of the dangers of such tools.
over-reliance causes learners to process AI information superficially,
rather than critically engaging with it using their own knowledge
[19]. Therefore, CS-Ed researchers and educators need to be aware
of students’ potential misbehavior and integrate best practices of
using AI code generators as part of the lesson plan.

5.2 Implications for Designers
Although prior research [15, 17, 18] investigated the impact of
prompts on the quality of AI-generated code, those studies were
mainly conducted offline, without user studies. In contrast, this
work provides analyses of how young learners craft prompts, in
terms of accuracy, language, and relationship to code. Our analysis
also found that poorly crafted prompts led to low-quality code that
learners struggled to work with. Therefore, future AI-generation
tools could be inspired by Grounded Abstraction Matching [33]
and support novices in crafting prompts that have a one-to-one
relationship with generated code without any missing details, as
both a learning activity and programming support tool.

Moreover, to encourage the self-regulated use of AI code gen-
erators, such as tinkering, future tools could offer a sandbox for
learners to experiment with the prompt until they achieve the de-
sired output through iterative testing and verification. This could
increase playfulness as learners may feel less attached to the gen-
erated code and be more willing to tinker with it. The sandbox
could also be designed in a way to promote tinkering, such as in-
corporating visual cues that differentiate editable values from fixed
syntactical parts of the generated code. These visual cues could
be designed in a way to promotes playful tinkering. In addition,
properly decomposing problems can support program development
processes [30]. However, we found that some students were not ef-
fective at task decomposition. Specifically, some students resorted to
dividing the task description sentence by sentence for each prompt.
Therefore, future design should consider incorporating guided plan-
ning components [26] or decomposition charts to train students
how to properly decompose a task. LLMs can also help with the
decomposition of a task. Future AI code generators targeted at
novices could break down a natural language programming prompt
into sub-tasks and display them as a Parsons problem. This way
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not only the solution is not revealed, but learners are required to
actively engage in a puzzle activity before writing code.

6 LIMITATIONS
The results presented are based on the participants’ uninterrupted
interaction with the AI code generator, and do not consider their
thought processes and motivations while using Codex. This limita-
tion restricts the depth of our qualitative analysis. Therefore, to fully
comprehend the exact motivations behind each Codex usage, what
each prompt message meant to the participants, their intentions
behind modifying the AI-generated code, and how they verified the
code, future introspective and retrospective think-aloud studies are
necessary. In addition, our analysis involved only 33 young learners
in an online and informal study setting. Other behaviors and usage
scenarios may be uncovered with different age groups, as well as in
more formal classroom settings like a K-12 or undergraduate pro-
gramming course. Furthermore, certain behaviors, such as placing
the AI-generated code incorrectly, are specific to the way Coding
Steps was designed, and therefore may not generalize to other AI
code generators.

7 CONCLUSION
With the rapid access learners have to Large Language Models
(LLMs) through tools like ChatGPT and Github Copilot (based on
OpenAI Codex), there are rising concerns about proper learning,
over-reliance, and plagiarism. However, these tools are here to stay;
therefore, it is necessary to adapt the future of curriculum and tool
development based on the most effective strategies and practices
that learners use with AI code generators.

This work provides initial insights into how learners use AI code
generators, including common usage patterns, the types of prompts
they use, and how learners verify and use AI-generated code. Our
detailed thematic analysis provide evidence of various signs of
over-reliance and self-regulation in learners when interacting with
LLM-based code generators. Some learners dealt with AI-generated
code properly even when using Codex in "autonomous" modes like
the AI Single Prompt approach. They manually added code to verify
it, and even tinkered with it to better understand the generated
code, however, some participants had difficulty integrating the AI-
generated code into their solution. In addition, students not only
used the original task description to ask for code, but they also
crafted prompts with varied language and clarity levels, which
sometimes affected the quality of the generated code. Furthermore,
we identified four general coding approaches when learners write
code with AI code generators: AI Single Prompt, AI Step-by-Step,
Hybrid, and Manual. We also analyzed the effect of different coding
approaches on learning outcomes tested a week later. Our analysis
shows consistently negative trends between the utilization of the
AI Single Prompt approach and post-test evaluation scores as well as
consistently positive trends between the utilization of the Hybrid
approach and post-test evaluation scores.
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